3.16 \(\int \frac{\cot ^3(x)}{a+b \csc (x)} \, dx\)

Optimal. Leaf size=38 \[ -\frac{\left (1-\frac{a^2}{b^2}\right ) \log (a+b \csc (x))}{a}-\frac{\log (\sin (x))}{a}-\frac{\csc (x)}{b} \]

[Out]

-(Csc[x]/b) - ((1 - a^2/b^2)*Log[a + b*Csc[x]])/a - Log[Sin[x]]/a

________________________________________________________________________________________

Rubi [A]  time = 0.0629755, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {3885, 894} \[ -\frac{\left (1-\frac{a^2}{b^2}\right ) \log (a+b \csc (x))}{a}-\frac{\log (\sin (x))}{a}-\frac{\csc (x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[Cot[x]^3/(a + b*Csc[x]),x]

[Out]

-(Csc[x]/b) - ((1 - a^2/b^2)*Log[a + b*Csc[x]])/a - Log[Sin[x]]/a

Rule 3885

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[((b^2 - x^2)^((m - 1)/2)*(a + x)^n)/x, x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 894

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[p] && ((EqQ[p, 1] && IntegersQ[m, n]) || (ILtQ[m, 0] && ILtQ[n, 0]))

Rubi steps

\begin{align*} \int \frac{\cot ^3(x)}{a+b \csc (x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{b^2-x^2}{x (a+x)} \, dx,x,b \csc (x)\right )}{b^2}\\ &=\frac{\operatorname{Subst}\left (\int \left (-1+\frac{b^2}{a x}+\frac{a^2-b^2}{a (a+x)}\right ) \, dx,x,b \csc (x)\right )}{b^2}\\ &=-\frac{\csc (x)}{b}-\frac{\left (1-\frac{a^2}{b^2}\right ) \log (a+b \csc (x))}{a}-\frac{\log (\sin (x))}{a}\\ \end{align*}

Mathematica [A]  time = 0.048905, size = 39, normalized size = 1.03 \[ \frac{\left (a^2-b^2\right ) \log (a \sin (x)+b)+a^2 (-\log (\sin (x)))-a b \csc (x)}{a b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[x]^3/(a + b*Csc[x]),x]

[Out]

(-(a*b*Csc[x]) - a^2*Log[Sin[x]] + (a^2 - b^2)*Log[b + a*Sin[x]])/(a*b^2)

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 44, normalized size = 1.2 \begin{align*}{\frac{a\ln \left ( b+a\sin \left ( x \right ) \right ) }{{b}^{2}}}-{\frac{\ln \left ( b+a\sin \left ( x \right ) \right ) }{a}}-{\frac{1}{b\sin \left ( x \right ) }}-{\frac{a\ln \left ( \sin \left ( x \right ) \right ) }{{b}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(x)^3/(a+b*csc(x)),x)

[Out]

1/b^2*a*ln(b+a*sin(x))-1/a*ln(b+a*sin(x))-1/b/sin(x)-a/b^2*ln(sin(x))

________________________________________________________________________________________

Maxima [A]  time = 0.959338, size = 57, normalized size = 1.5 \begin{align*} -\frac{a \log \left (\sin \left (x\right )\right )}{b^{2}} + \frac{{\left (a^{2} - b^{2}\right )} \log \left (a \sin \left (x\right ) + b\right )}{a b^{2}} - \frac{1}{b \sin \left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*csc(x)),x, algorithm="maxima")

[Out]

-a*log(sin(x))/b^2 + (a^2 - b^2)*log(a*sin(x) + b)/(a*b^2) - 1/(b*sin(x))

________________________________________________________________________________________

Fricas [A]  time = 0.549081, size = 124, normalized size = 3.26 \begin{align*} -\frac{a^{2} \log \left (-\frac{1}{2} \, \sin \left (x\right )\right ) \sin \left (x\right ) -{\left (a^{2} - b^{2}\right )} \log \left (a \sin \left (x\right ) + b\right ) \sin \left (x\right ) + a b}{a b^{2} \sin \left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*csc(x)),x, algorithm="fricas")

[Out]

-(a^2*log(-1/2*sin(x))*sin(x) - (a^2 - b^2)*log(a*sin(x) + b)*sin(x) + a*b)/(a*b^2*sin(x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot ^{3}{\left (x \right )}}{a + b \csc{\left (x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)**3/(a+b*csc(x)),x)

[Out]

Integral(cot(x)**3/(a + b*csc(x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.39481, size = 59, normalized size = 1.55 \begin{align*} -\frac{a \log \left ({\left | \sin \left (x\right ) \right |}\right )}{b^{2}} + \frac{{\left (a^{2} - b^{2}\right )} \log \left ({\left | a \sin \left (x\right ) + b \right |}\right )}{a b^{2}} - \frac{1}{b \sin \left (x\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(x)^3/(a+b*csc(x)),x, algorithm="giac")

[Out]

-a*log(abs(sin(x)))/b^2 + (a^2 - b^2)*log(abs(a*sin(x) + b))/(a*b^2) - 1/(b*sin(x))